Reduction and solution of the chemical master equation using time scale separation and finite state projection.

نویسندگان

  • Slaven Peles
  • Brian Munsky
  • Mustafa Khammash
چکیده

The dynamics of chemical reaction networks often takes place on widely differing time scales--from the order of nanoseconds to the order of several days. This is particularly true for gene regulatory networks, which are modeled by chemical kinetics. Multiple time scales in mathematical models often lead to serious computational difficulties, such as numerical stiffness in the case of differential equations or excessively redundant Monte Carlo simulations in the case of stochastic processes. We present a model reduction method for study of stochastic chemical kinetic systems that takes advantage of multiple time scales. The method applies to finite projections of the chemical master equation and allows for effective time scale separation of the system dynamics. We implement this method in a novel numerical algorithm that exploits the time scale separation to achieve model order reductions while enabling error checking and control. We illustrate the efficiency of our method in several examples motivated by recent developments in gene regulatory networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multiple time interval finite state projection algorithm for the solution to the chemical master equation

At the mesoscopic scale, chemical processes have probability distributions that evolve according to an infinite set of linear ordinary differential equations known as the chemical master equation (CME). Although only a few classes of CME problems are known to have exact and computationally tractable analytical solutions, the recently proposed finite state projection (FSP) technique provides a s...

متن کامل

A Multiple Time-Step Finite State Projection Algorithm for the Solution to the Chemical Master Equation

At the mesoscopic scale, chemical processes have probability distributions that evolve according to an infinite set of linear ordinary differential equations known as the chemical master equation (CME). It is commonly believed that the CME cannot be solved except for the most trivial of cases, but recent work has raised questions regarding validity of this belief. For many cases, Finite State P...

متن کامل

A finite state projection algorithm for the stationary solution of the chemical master equation.

The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of ...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Improved Krylov-FSP Method for Solving the Chemical Master Equation

Model reduction techniques are needed to directly solve the chemical master equation (CME) due to its enormous size. We recently described an algorithm that solved the CME by combining the finite state projection, stochastic simulation algorithm and Krylov subspace approximations. In this work, we add further improvements that consist of an incomplete orthogonalization process with Krylov subsp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 125 20  شماره 

صفحات  -

تاریخ انتشار 2006